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We consider plane and axisymmetric hypersonic flows of an ideal gas behind a compres- 
sion shock satisfying the conditions cos (n, i) ~T, cos (n, J)~ 1 everywhere except for a 
small vicinity of the apex. Here the small parameter z ~ I; a is the normal to the surface 
of the front; i is. the unit vector of the xl axis; J is the unit vector of the x= axis; Lx i 
(i = i, 2) is the rectangular Cartesian coordinate system; L is the characteristic length. 
The impinging stream is assumed to be homogeneous. Assuming that the condition K = M~r~l 
is satisfied for a shock having close to a power-law form close to the apex, we consider the 
behavior of the solution outside the vicinity of the apex as z ~ 0 on the basis of the meth- 
od of joined asymptotic expansions. In doing this we take the expansion of the hypersonic 
theory of small perturbations [i], which describes unsteady one-dimensional flows in the ze- 
roth approximation, as the outer expansion in the region adjacent to the front. 

A great many results in the theory of the flow over thin bodies by a hypersonic stream 
are based on an analogy with unsteady flows in a space with a number of dimensions smaller 
by one. However, the validity of such an analogy in the case when an entropy layer develops 
in the stream has not yet been fully proven [2]. A detailed analysis of the known results 
on this question is carried out in [3, 4]. An explicit connection between the two-dimen- 
sional problem under consideration and the unsteady one-dimensional problem is established 
in the present report. Particular cases of the results obtained are compared with the known 
results. 

The system of gasdynamic equations in the variables "pressure-- two stream functions" [5] 
has the following form in the two-dimensional case: 

Oui Oxi '--l" c3x---!l U,  Ox~ 

o 
u~-,-  u':; • p ! t --2 0 
----:f---2 4- . . . .  ~ _ _  ~ Moo ; ' x - - l p  2 ~-  O. 

(1) 

Here and below an index i > 2 is read as i -- 2; V = 0 and 1 for the plane and axisymmetric 
cases; p~u2~p is the pressure; p=p is the density; u=u i are the components of the velocity 
vector along the x i axes, respectively; p~u~L I +v~ is the stream function; the xl axis is 
directed along the velocity vector u~ of the undisturbed stream; and K is the ratio of spe- 
cific heat capacities of the gas. Henceforth we will assume that the condition 1 < < < 2 is 
satisfied. The index = pertains to the conditions in the undisturbed stream. 

The boundary conditions at the shock wave have the form 

9 I - -  • ~ , - - 2  l •  l 2 M ~  2 ( i  �9 n ) - 2 ;  P = ~ ( i ' n ) 2  + •  ; p - - ~ ' ~ ' i + ~  

' t ) 
( i  - - v ) ( i  �9 n )  =/p - - - -~ / .  MT~ 2 n ,  

where v is the velocity vector of the disturbed motion at the shock. Being confined for 
simplicity to a surface of a front which is symmetrical relative to the xl axis, we assign 
the analytical expression for the shape of the front in the form 

x~ = T2v/2~l/(!§ v), x L = g(~) ~r  x 2 >~ O, 
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where the function g(~) provides for a smooth solution in the disturbed region and has the 
following properties: i) lim g(~)/~a = const as ~ § 0; i/(i + v) < a~ (3 + ~)/2(i + v); 
2) dx2/dxx~0(T) everywhere except for a small vicinity of the apex. Here the limitation 

> I/(i + ~) provides for the appearance of an entropy layer, while a ~(3 + v)/2(l + v) is 
a limitation emerging from the mean of construction of the solution outside the entropy layer. 
The first property assumes that the form of the front is close to a power law at the apex. 
OutSide the vicinity of the apex in the region where p ~0(x ~) the solution is constructed 
by the method of joined asymptotic expansions [6]. 

In the inner region adjacent to the streamline ~ = 0 the inner expansion is constructed 
as follows. We consider the entropy layer, i.e., the gas layer passing through the section 
of the shock wave with a slope I > 8>/0, ~8~ cos (n, i)~ i. With allowance for the law 
of conservation of entropy per particle, as well as the order of magnitude of the pressure, 
we obtain in the entropy layer0(x2m)~p~0(x( z- 2p)/~. Henceforth we set p ~ 0(TY) in the en- 
tropy layer, where 2/< ~_~y ~(2 -- 28)/r. At the boundary of the region under consideration 
U~0(T). Assuming that the condition U=~0(T) is satisfied across the region under con- 
sideration, we obtain from the Bernoulli integral 

u~ ~ i + 0(T +- - "0- (2) 

Thus, 

uz = / ( i  + 0(x:)), / =  {t  - -  12z / (z - - ] ) ]p /p}+ /+- .  

And f o r  t h e  d e r i v a t i v e  o f  t h e  B e r n o u l l i  i n t e g r a l  w i t h  a l l o w a n c e  f o r  (2) we g e t  

(3) 

OUl/~ p = - - ( l /p / ) ( l  -:- O(Tr)) (4) 

Across the disturbed region y varies from 2/< in the vicinity of the surface of the body to 0 
in the vicinity of the surface of the front. A concept of the region of applicability of (4) 
can be obtained by considering the isobars p = const. For example, everywhere in the region 
under consideration where ]~p/~x,/~p/3x21~0(1), the parameter y ~i. 

The fulfillment of Eq. (4) in the entropy layer allows one to considerably simplify sys- 
tem (i). Substituting (3) and (4) into (i), we obtain 

0 

§ o,+,, , :  

0~ = I (1 + 0 (~2)), ~/p~ = F (+, ;), 

w h e r e  p = z a ~ ;  ~ = r x + Y  ~; xuo and  F a r e  a r b i t r a r y  f u n c t i o n s .  I n  t h e  c o o r d i n a t e  s y s t e m u s e d  
the pressure enters into the integrand as a parameter. Therefore, the integration of system 
(i), if the entropy distribution along the streamlines is known, comes down to the integra- 
tion of s one quasilinear parabolic equation with respect to xx in system (5) in the en- 
tropy layer. 

Representing xx for small ~ in the form of asymptotic expansions with respect to ~, we 
obtain from the second equation of system (5) 

z l  = z10(r x) + x~l(L x) ; + ~(~, T, ;),  (6) 

where the function xxo is arbitrary; 

-v d d dx~ i +. 

X l l  = t | dx--I 

t l '  

~o ~ O, 

i f  X+o - -  0 . 
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The function T does not exceed the following quantities in order of magnitude: 

+:!i 
[ at  v - -  1, i f  X + o = O .  

The approximate solution (3)-(6) constructed depends on the three arbitrary functions X2o(~,O, 
x~o(~, r), and F(~, ~), which describe the surface of the body, the pressure distribution 
over the body, and'the entropy distribution along the streamlines, respectively. We repre- 
sent the solution in the region adjacent to the front in the form 

$ i  = " [ { -  l ( Y l  - ) -  T2Z{  --~- " ' "  l / 1  : t ---~ "t~ 1 + "[4Zl" 1 ---,' . . .  

P = Po -!- ~'-'P~ --: ..- u~ = ~(v~ + ~u'++ + ... 
p = -r-+(~ + ~p~ + ... r = + + , ~ .  

(7) 

The expansions (7) are obtained in accordance with the orders of magnitude of the unknown 
quantities at the front. The functions Pi are given only through their values at the front, 
for the satisfactorion of which it is sufficient to take Pi = Pi(~)" Changing to the new in- 
dependent variables ~ and 5, after the substitution of (7) into (i) we obtain 

o ,  
o--~ = ( - -  t )"~.~ ~ o = O; 

o~ , o~ 

o++ o+_, i _oi,  o? 02 o~ - ( - 1  y~--OV-; + o: z~ ; o~ t ? - •  

�9 ~ . . . ~ . . . . . . . .  . . . . . . . . . . . . .  o . 

, 1 2 • .~ 1 
z - - t  P0 : z - - I K - - 2 ; -  1.21-y---5-)122 

, + , ~  ~ ( p ,  ~o,~  O; u'~ - r - ~  v~ - r  v'w" + -~  w; =- ~.-_-- l \ .oo o~)  

(8) 

- ~ ~ . , . . . . . .  | . . . . . . . . . . . . . . . . .  

0y t 0g~. 0z+ , 0y t 0z+ (?yz 

The expression for the normal to the front has the form 

nl-=  - - ~ A ( t  -~ ~L4~)-~/2; n.+ - -  (1 + ~+'A2)-~/~; 

A = 2 - ' , '2 ~ -  ,/(1 + ,,)dg-1/d$, 

and by expanding this in series which converge for T2A 2 < i and substituting the expansions 
into the boundary conditions at the front, we obtain 

= [2/(• -;- l ) ]A"  -P [(I - -  •215215 + J ) I K - ~ ;  

vl = - -  I2/(• - !  I ) ] A  2 -i- [2/(• + t ) I K - : ;  

Px = - -  [2/(• § I)]A+; u,1 = [2/(• -? I)]A4; 
. . . . . . . . . . . . . . . . . . . . .  (9) 

, / , o o 

1/p0 (• - -  1)/(• -~ I)  -~ [2,(• -~ I ) I K - - A - - ;  

,:, = {[2/(• -L t ) ] A  +- - -  [2/(• + i)]K--+}A-1;  

Ot __ 2 W 2 - -  2 Aa" 
p2 •  K - 2 ;  u q - i "  

C o n s i d e r i n g  t h e  c o n d i t i o n  T -~ 0 ,  we w i l l  a s s u m e  t h a t  t h e  b o u n d a r y  c o n d i t i o n s  (9)  a r e  s a t i s -  
f i e d  f o r  5>~0.  T h u s ,  t h e  p r o b l e m  b e c o m e s  c l o s e d  f o r  e a c h  a p p r o x i m a t i o n  o f  t h e  o u t e r  
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expansion (7). The solution of the zeroth approximation describes plane and axisymmetric 
one-dimensional unsteady gas flows behind a front of the form t = g(~), r = 2v/=~ ~/(~+~), 
where t is the time; r is the spatial coordinate. It is shown in [7] that for the existence 
of a solution of the unsteady problem it is necessary that a ~(3 + v)/2(l + ~). From this 
follows the limitation imposed above on a. 

The joining of (3)-(6) onlywith the zeroth approximation of the expansion (7) is carried 
out below. Since the zeroth approximation itself is an asymptotic representation of the 
exact solution outside the inner region, the terms of the zeroth approximation retained in 
the joining must be of a lower order of smallness than the principal terms of the higher ap- 
proximations. And the choice of the regio n of joining is not obvious without an analysis of 
the behavior of the higher approximations. Therefore, it seems appropriate to make a brief 
study of the behavior of the higher approximations. 

If in a region R adjacent to the front, except for some vicinity of the lines ~ = 0, the 
boundary conditions provide for a sufficiently smooth solution of the zeroth approximation, 
then the continuous solution of the higher approximations up to some number j is determined 
in this region. To discover the nature of the behavior of the latter in the vicinity of the 
line ~ = 0 we represent the solution of the k-th approximation in the form of the asymptotic 
expansions 

Fa = F,:o(~)gko(~) Ya~(~)g~(~) . . . ,  g,,. i+i/g~.~--~'O as ~ - ~ 0 .  

Substituting the latter into (8) and allowing for the conditions (9), we obtain 

if y ~ o  # O. 

x~ ~ ~(0(1) -i- T ~ A  ~ + 2 .q , ) ;  u2 ~ ~(0(I)  -i- T'-~'~ 

In the case of Y,o = 0 the only difference will be with ~ = I for the components 

u~ ~ ~A~V"(O(t) + ~A:~O);  (~ = 0(~) -i- ~O(A'-~) i- ~O(A ~) - : -  . . .  

The term T2J0(A2<J), where A ffi ~*/~[*/(~+9)-a], in the expression for the function # de- 
scribes the nature of the behavior of the j-th approximation in the vicinity of the line 

= 0 relative to the zeroth apprgximation. Thus~ the rate of decline of the asymptotic ex- 
pansions with respect to~ is characterized by the expressionT=O(A2<) = (2[,/(~+v)_a]). There- 
fore, the corrections to the zeroth approximation are generally not small in the region of T20(A 2<) 

i, for which the values of the entropy in the zeroth approximation are close to the values 
of the entropy behind a straight compression shock in a steady stream. The fact of the ne- 
cessity of a correction to the zeroth approximation for these values of ~ is obtained from 
other considerations in [3]. 

Being confined to only the zeroth approximation of the outerexpansion, we determined 
the arbitrary functions X~o and x~o of (5) and (6) from the condition of joining in the re- 
gion r20(A2K) ~ TSo, where the zeroth approximation and (5) have the same accuracy. Using the 
boundary conditions at the front, one can show that in this case 8o = 2/(<+ i) and one must 
set y = 80 in (5) and (6), while the region of joining is determined by the values of ~ 0 
(~(J+v)/(~+O(~(~+v)-l)). The solution of the zeroth approximation for the ~ of this region has the 
form 

y'o+  = + Jf d (l + 0 
0 

1 
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g,o(~)+g"-o r 7.: d~ ~ ( l  + O ( - r e ' ~  , d$d$ . geo :#0 ,  
' ,  ( |  

v ~  d ~-'_-~-z ~ ( 1 - - 0  ( @ ~  v) 0 d~d~ , g,_,o--O; g ~ o ( ~ ) §  - d~ t d~ d~ ~ - ~ 
�9 0 

~ ~ ~-o(l), ' (2---L-'~i• 
V l  --=C0~ • A x  Co == 

, , -  i p,, p,, ' V + U V r + l ] .  

Here we retain only the terms which are of a lower order of smallness than the principal 

terms of the higher approximations. The function t = Y~o($) describes the pressure distri- 
bution, while the function r = Y2o(~) describes the trajectory of a particle passing through 

the front at the start of the motion. The methods of determining the latter are well devel- 
oped [i, 8], and therefore we will henceforth consider the functions y~o and Y2o as known. 
For a detailed analysis of the flow we require, the concrete form of the function g(~) in the 
small vicinity of the apex of the front. We perform the analysis for functions g(~) which 
for ~ ~()(r• + v)(~ + ~)(~::i +v)--;~) satisfy the condition 

A = Ao (1 + 0 ( : ' ) ) ,  4 = 2 - " ' ( ~ ) - ' ; ~ : ( ' + v ) - L  ( lO)  

which clarifies the degree of closeness of the function g(~) to a power-law function. Here 
c > 0 is an arbitrary constant. Since K ~i, from the boundary conditions at the front for 
the indicated values of ~ we have 

I 2 �9 ., .~ \ 1 

~ =  C o ~ - - C ~ x ( l + o ( : o ) ) ,  x :  - -  

Using (i0), one can obtain 

1 ~ . • ~ ; ~l (ll-- I) . . .  (q - - j - i -  I) 
1 7 ~ 4  ~:  �9 x l ~ )T B ( - ~  X d~( l+0( :0) ) ,  (Ix) 

o o \ j =  t 

w h e r e  B = - - [ 2 K / ( K  - - 1 ) ] C o r  n = -- 1 / 2 ;  t h e  i n t e g e r  l i s  d e t e r m i n e d  b e l o w .  I n  t h e e a s e  
o f  a = (3 + ~ ) / 2 ( 1  + v)  (a s t r o n g  e x p l o s i o n  i n  t h e  c o r r e s p o n d i n g  u n s t e a d y  p r o b l e m  w i t h  s u b -  
s e q u e n t  e x p a n s i o n  o f  t h e  p i s t o n )  we h a v e  

} 

I " ~  
X d~ .... 

t !  
0 

~" ~t ( X n - ~ - t ) ,  u = . ~-, 
• - -  n , ~,-V-: n = 1, 2, . . . .  (12)  

In the general case for ~ from the region of joining we have 

~- l + v  

( t -P , ,  (.tFo) a(,+v)--i (01 ( b ) - - O o ( ~ )  ). (13)  X ' d ~  = 2 (~  (1 + v) - -  ~) 

Here and below Fo = 2-v/2(ca) -:, b = -- n/N, a = -- b -- h -- 2, h = (i + 9)/2(a(l + ~) -- i)--I; 
the function r has the form 

' .-, 2 !0(~-A,,),  a + I # o, 
if ]/z < -- b, 

o o 
1o m + ,  = 0, 

~ d  (~ + 1) -~  (:A~,)  o§ + 0 ( ( ~  + 2 ) - '  (:A~,)  o < )  wh,~ b = - -  t /~.  

We note that when b = -- I/K the number a + i # 0 for the intervals of variation of ~ and K 
under consideration, while the residual term must be replaced by 0 in (TaAo 2) with~ = i/(i+ 

v) + K/2(K + i). The constant ~i does not depend on r and has the form: i) -- b < 2, 

~P~ = [l /(h + l ) ] F ( - - b ,  h + t ,  h -~- 2, - - i )  + [1/(a - . ' - l ) ]F(=-b ,  a -[- l ,  a 2_ 2, - - i ) ;  

2) 2~--b < 3, 

q~, = --2b + 2(b - -  1)-1 @ (h + i)- ' (b  + t)-~(b @ h + 2 ) F ( - - b  - -  t ,  

h + 1, h q - 2 ,  - - t )  + (a + t ) - ' ( b - ~ -  t ) - ' ( b - ' -  a @ 2 ) F ( - - b - -  t ,  a + 1, a @ 2 ,  - - t ) ;  
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3) --b >3; m = [--b] --i ([ ] is the integral part of the quantity), 

(7/)1 --= b2b+2+ 1 ~ (b -]- h -]- 2) . . .  (b +(bh.~_-~- l)k} ...2'- (b(b -~'-~-ak) + 2) ... (b -,'- e -!- k) X 

• 2 4 7  l----iF ( - b - m , h + l , h +  o , - ~ ) - t -  
(b+t)  . . . ( b + m )  h T 

.+ ( b . ~ a + 2 ) . . . ( b +  a-4--m+ i) t 
( b + l ) . . . ( b + m )  a ~ t F ( - - b - - r a ,  a ~ t ,  a + 2 , - - l ) ,  

where F (u, 
included in 1-3) by the following agreement: if a + j + i = 0, j = 0, i, . 
j-th term in the corresponding series is replaced by zero. 

Using (ii) and (13), for ~ from the region of joining we have 

[ x~U+ ~ ..I+v ~ + ~  T) ~+~ = - y2o (~)  + r  -1- 0 (~), t T )  
t td-v 2 

. ~ ~ ( I _ ~ , ) _ _ t  ~ o I E Q~)i -- -7" 

z [ o 2 ~  ~ l \ ] ) j  
' ~ r l (~ l - - ' l )""  ( " 1 - - ' 1 + 1 ) k B , - - - - r  dil( "7- ~=l ] I  

8, Y, -- i) are converging hypergeometric series [9]. Possible singular cases are 
, then the 

(i4) 

The expressions [=--I/(I ~v)]-kz(i+v)/[=( i +v)-il, where the integer k < ~, which are en- 
countered here behave in a nonsingular way as a § i/(i + ~) as the function k! (In T)ThT(1+v)/ 
[=(i+v)--ll. The residual term in (14) has the order 0(z21n z) when a = I/(i + v)+ </2(~ + I) 

and 0 p--i d~~ N~ (x+~ in the joining region in the remaining cases. 

\0 

From a comparison of the orders of magnitude of the function ~2 and the residual term 
it follows that for i/(l + ~) < u ~l/(l + v) + </2(< + I) in the determination of the func- 
tion X=o the function ~2 must be included in the residual term. As one can show for I/(i + 
~) + </2(< + i) < ~ ~(3 + v)/2(l + v) the principal term r of the function T=z2 of the 
first approximation in the joining region is of the same order of magnitude as the residual 
term in (14), while for i/(i + n)~. = ~i/(i + v) + </2(< + I) it does not exceed 0(r=). 
Thus, it is incorrect to make the residual term in (14) concrete without allowance for the 
solution of the first approximation of the expansion (7). Therefore, setting x=o(E, ~) = " 
y=o(~) in the case of i/(i+ ~)~I/(i + v) + ~/2(< + i) and setting x=oi+v(~, ~)=y=o~+v(~) 

-- ~a and I = 2-- ~ (~+I)(~(I+~)--i) in the case of i/(i + ~) + </2(~ + I) < ~/ 

(3 + ~)/2(i + ~) (in this case for ~ = 0 one must keep only the first term in the function 
r we obtain in the joining region (x2/~) *+~ = y i+u + 0(e, r In the case of u = (3+ 

�9 ~)/2(I+ u) the expression for ~= is simplified in accordance with (12) and has the form 

( ~ = - - 2 ~ C o [  ~ :  "~t •  + q ( n - - t ) . . . ( n - - / + i )  /' o z~i ~ (15) 
- ~=~ ~ ! ~ B C  - ~ - )  ~ - v  - i" 

The functions xz and Yz are joined in accordance with the behavior of the function Y2o. Tak- 
ing Xlo = ylo(~) in (6), we obtain the following: 

A. y2o # 0. In the joining region 

= ~ ( y . 0 )  d~ / ~ + o ( s ~ ) ~ ,  x ~ - v ~  = 0 ( 8 0 5  

The q u a n t i t y  0 ( r  does  n o t  e x c e e d  i n  o r d e r  o f  m a g n i t u d e  t h e  maximum of  T 8~  T * - 2 / < ,  
l~(l+v) 2 x(l+v) 

~(,+i)(~(i+~)Ti)--~+i. Thus, with an accuracy 0(~i)~(z+i)(=(i+,)--i) in comparison with unity x, = y~ 

in the joining region. 
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B. y=o = 0. i) ~ = 0. In the joining region 

X l  
2) l o) i u(t-l-v)--I ~" ~ , --+J,o(~)-.i- 0 .,+ ,, ~ ~- 0 i+ i--  ~d~  

~ j j + )  ~ , 

\ 0 ] 

and, as one can show, 

2) v = i. 

X l  - -  ,~/1 =-- (I ~T TM . 1 ~ 1 - - 1 )  

In the joining region 

2 • . ~ )  
~ - i  ~(x-i- l ) ( o ~ ( l ~ v ) - -  1 ) 

d [ d {--~---~dy~ ~] [ o _.~ 

a'~ - -  g~ =: O(e~)~• + v)/'(~. + i)(~(~ + v ) -  O. 

\ 

After the arbitrary functions x2o and Xlo are determined, one can verify that the join- 
ing of the remaining functions is performed with an accuracy 0[~2/( ~ + I)] in comparisonwith 
unity, while a solution which is uniformly valid in the region under consideration is con- 
structed as follows. In the outer region the solution is described by the zeroth approxima- 
tion of the expansion (7), while in the inner region it is described by the functions 

( ~ } ~  'v  ,-Lv.o 2~. [_~_ d~, Ul =: f, 
x._,, (~. T)-~- .! ~'i . 

0 

t/,, ~.r  l r / .r.~ "] 
:q =:,,/~o(~) :-x~+, -F , ,~  := /7+  !-7-,, J,/,o : Co~-U~'+-+-,'~x 

i 

(the functions x20 and x~1 were determined above). 

The calculation of the integral is simplified by the fact that the pressure enters in- 
to the integrand as a parameter, and it is actually performed during the determination of 
the arbitrary function x20. Here the outer and inner regions, as shown above, have a com- 
mon part where both expansions are applicable. The shape of the surface ~ = 0 of the body 
has the form 

�9 f / ~cl+v) ~) x2~ [ 1 ~_ • 

' --(1)2, ~-17. i ~ ~ a ~  2 3 - i -v  
(• -!- (l -~ v) ' 

.~,, = y , , , ( ~ ) .  

Thus, if one considers only the zeroth approximation of the expansion (7), then as a § 
i/(i + v) the correction to the contour of the body obtained from the solution of the corre- 
sponding unsteady problem becomes as small as desired in the region under consideration. The 
transverse size of the region of inapplicability of the zeroth approximation of the expan- 
sion (7), determined above by the values of ~ ~0[~<( I + v)/(< + I)(u(I + ~)-i)], also becomes 
as small as desired, which reflects the fact of the continuous dependence of the solution on" 
the boundary conditions, since when u = !/(i + v) the entire field of flow is described by 
the zeroth approximation [i]. However, for all i/(i + v) < a ~-~(3 + v)/2(l + ~) the correc- 
tion to the zeroth approximation of the expansion (7) in the inner region is not small. 

In comparing particular cases of the solution obtained with known solutions we note that 
if the shape of the front in the vicinity of the apex has the form x=/T = K1x12/( ~ + v), then 
the results of [i0] are suitable for the determination of the shape of the surface of the 
body. And, as follows from [I0], the equation of the surface of the body has the form 

I+~, ~+~, ---~- • 2 ~ 3- ' -~- t  ~+ ) =Y~o ( x J +  poo (x,)-C-~-- t ~ ~ +/+,' ++ , 
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where Ybo is the shape of the body and poo is the pressure distribution over the body, which 
follow from the solution of the corresponding unsteady problem. In this case, in [i0] terms 
of order 0(T4[(K-I)/<]) are discarded in the calculation. One can veri~y that this case cor- 
responds to the following values of the parameters used above: <i = 2 ~/2 c-~/a( ~ + ~), a = 
(3 + ~)/2(i + ~). Retaining in (15) only the term of order 0(T2(r-~)/<) and using the expres- 
sion obtained above for the shape of the body, we obtain 

�9 

t+v t§ • ( 2 ~_~) V___~ • 2 - -  

C o n s i d e r i n g  the meaning of the functions y~o and y~o and the connection c = C(K~), we see 
that the two expressions fully coincide. Here the terms of higher order of smallness than 
the first term in (15) are due to the allowance for the departure of the function f from 
unity. As follows from (15), the allowance for the latter makes sense for values of < near 
unity. 

In the case when the shape of the front everywhere has the form x= = clx~ n and K = 
(the self-slmilar case in the corresponding unsteady problem), the solution as x~ § ~ is 
constructed in [3]. Let us make a comparison, taking c~ = 2 9/= c-nr, n = i/a(l + v), and 
being limited for simplicity to values of i/(I + v) + </2(~ + i) < u < (3 + v)/2(l + ~) and 
to the region of ~_ (TFo)( ~ + 9)/[a( I + ~)-*] (for ~ from this region the projection of the 
vector of the unit normal to the front onto the xx axis is equivalent to unity in order of 
magnitude). The departure of ul, the longitudinal component of the velocity of the disturbed 
stream, from unity was neglected in the determination of the coordinate x~ in [3]. In the 
present report the departure was taken into account by the function f and entered into the 
function ~= in the form of the terms additional to the first term. It is therefore appro- 
priate to make the comparison by taking f = 1 and leaving only the first term in the expres- 
sion for r 

From the results presented above we get the form for the function x= in the indicated 
region: 

~b(Xl)__~ b u --v --'-~- t k k --=" = Yb Co~ A 1 - ~ F  ~ '  2 '  2 + 1 '  . , 

A~ = (Foz)~(F(I/•  k/2, k/2 + l , - -  1) + [• - -  • F ( i / z ,  l / •  l /•  --~k/2 -~ l, - -  l)); 

w h e r e  k = [~ - -  t / ( i  + v ) ] - t ;  ~ ~ 2V/2c-~/=(~+v)%ox~/~i+v) i s  t h e  s u r f a c e  o f  t h e  b o d y  and  ~b = 
o 

21--v 
\ 

, - ~ )  i s  t h e  p r e s s u r e  d i s t r i b u t i o n  o v e r  t h e  b o d y  w h i c h  f o l l o w s  f r o m  • t ~--2C ~(l+V)hoXl_2(~ i 

the solution of the unsteady problem; lo and ho are constants. The corresponding expression 
from [3], rewritten in thenotation of the present report, has the form 

x2 __ -- T --~ ~ k Iz "-:- - - 2  - - 2  h 
-T - - -Yb  ( x l ) - ~ "  YD Co'C Fo'c)lCN--~ F ' 2 '  2 ~ J . - - T  F o ~ . 

H e r e  N i s  t h e  p r o d u c t  o f  t h e  gamma f u n c t i o n s  

N = r(k/2 + t ) r ( l / ~  - -  k/2)F-~(l/• 

U s i n g  t h e  w e l l - k n o w n  p r o p e r t i e s  o f  h y p e r g e o m e t r i c  s e r i e s ,  one  can  show t h a t  At = (FoTk)N.  
Therefore, the expressions for x2 fully coincide. 

The pressure distribution which follows from the transformation of the function xl = 
x1(~, ~) has the form 

--~4-Fa c ~(l*'~;x, ks ho § x+t2k ~'2--'~cr ~ " 

The latter coincides with the corresponding expression of [3] with the accuracy of terms con- 
taining the functionsP2 and P~ (notation of [3]). The function Pz ~ 0(T 2) is determined, as 
follows from [3], by the solution of the first approximation of the expansion (7). And the 
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allowance for the term P~ makes a contribution to the pressure distribution no larger than 
0(~4-2/~). In the present report neither of these corrections was taken into account in 
the derivation of the expression for xl. The form of the remaining gasdynamic quantities u~ 
and u2 is fully determined by the distributions of the functions x2, p, and p, and therefore, 
no comparison is made for them. 

In the general case the agreement established above allows one to effectively construct 
a solution to the inverse steady problem any time that a solution is constructed in the cor- 
responding unsteady one-dimensional problem. 
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SEMIEMPIRICAL THEORY OF THE GENERATION OF DISCRETE TONES BY A SUPERSONIC 

UNDEREXPANDED JET FLOWING OVER AN OBSTACLE 

V. N. Glaznev and V. S. Demin UDC 533.534.115 

w The phenomenon of the generation of a strong discrete tone by a supersonic under- 
expanded jet flowing over an obstacle was first discovered by Hartmann [i]. There are pres- 
ently a considerable numberof reports devoted to the experimental study of the Hartmann 
effect [2-4]. However, the mechanism of formation of these oscillations has not been clari- 
fied up to now [2, 5]. An elementary theory of this phenomenon is presented in the present 
report. 

A diagram of a supersonic underexpanded jet flowing over a flat obstacle is presented 
in Fig. 1 (i is the jet boundary; 2 is the central compression shock (the Mach disk); 3 is 
the suspended shock; 4 is the reflected shock; and 5 is the contact discontinuity). The ef- 
fect consists in the fact that the flow becomes unstable at certain values of the nozzle 
Mach number Ma, degree of nonratedness n = pa/Ps of the jet (Pa is the pressure in the jet 
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